AI safeguards imaging devices from ‘malicious’ cyberattacks

A new artificial intelligence technique promises to ward off cyberattacks targeting medical imaging devices and protect against other system-related errors.

The dual-layer platform identifies potentially malicious instructions sent from a host computer to an imaging machine. And when tested on a computed tomography system, it detected up to 99% of abnormal information.

Researchers from Ben-Gurion University of the Negev in Israel will present their work Aug. 26 at the 2020 International Conference on Artificial Intelligence in Medicine.

Tom Mahler, a PhD candidate at BGU, will lead the talk on Wednesday. He noted that medical devices such as MRI, ultrasound and CT are controlled by instructions sent from a primary computer. Cybercriminals can, however, bypass protections and send altered directions to such modalities, manipulating radiation settings or device components to harm patients.

And in some cases, a technician may make a costly error or a virus-infected host computer could automatically disrupt the imaging process.

With this in mind, Mahler et al. created their dual-layer architecture that focuses on rooting out two types of deceptive instructions. The first is known as “context-free” directions, which are “unlikely values” such as administering 100-times more radiation than is normal. The other is “context-sensitive” instructions, which can include mismatching the intended scan type, patients’ age, or diagnosis.

"For example, a normal instruction intended for an adult might be dangerous [anomalous] if applied to an infant,” Mahler said in a statement. “Such instructions may be misclassified when using only the first, context-free, layer; however, by adding the second, context-sensitive, layer, they can now be detected.”

The team tested its AI on a CT system, using 8,277 recorded instructions and put the context-free layer to the test using 14 unsupervised detection algorithms. As part of their study, they evaluated the context-sensitive layer on four various clinical objectives.

After analysis, the second CS layer boosted the overall detection of abnormal instructions from 71.6% (F1 score) to between 82% and 99%.

""

Matt joined Chicago’s TriMed team in 2018 covering all areas of health imaging after two years reporting on the hospital field. He holds a bachelor’s in English from UIC, and enjoys a good cup of coffee and an interesting documentary.

Around the web

Radiology practices are already operating on razor thin margins, with price increases prompting calls for congressional action to prevent further damage. 

United Imaging and other manufacturers that have established American factories may remain insulated from the trade war.

Erik Rockswold, director research and quality, Rayus Radiology, explains the administrative burdens radiology groups experience for little return from the Merit-Based Incentive Payment System.