Artificial Intelligence

Artificial intelligence (AI) is becoming a crucial component of healthcare to help augment physicians and make them more efficient. In medical imaging, it is helping radiologists more efficiently manage PACS worklists, enable structured reporting, auto detect injuries and diseases, and to pull in relevant prior exams and patient data. In cardiology, AI is helping automate tasks and measurements on imaging and in reporting systems, guides novice echo users to improve imaging and accuracy, and can risk stratify patients. AI includes deep learning algorithms, machine learning, computer-aided detection (CAD) systems, and convolutional neural networks. 

Thumbnail

Machine learning model uses MRI data to identify candidates for liver transplant

When applied to MRI and clinical features, different machine learning models were recently shown to reliably predict post-treatment recurrences of hepatocellular carcinoma. 

Thumbnail

Deep learning system outperforms rads in brain tumor identification and classification

The new findings findings represent “a step toward improved tumor diagnoses," according to authors of a new study published in JAMA.

An overview of artificial intelligence (AI) in radiology with Keith Dreyer with the ACR. Images shows a COVID-19 lung CT scan reconstruction from Siemens Healthineers. #AI #radAI #ACR

VIDEO: Overview of radiology AI by Keith Dreyer

Keith J. Dreyer, DO, PhD, FACR, American College of Radiology (ACR) Data Science Institute Chief Science Officer, explains the state of AI in radiology in 2022. 

Example of a radiology diagnostic aid artificial intelligence (AI) algorithm with Lunit's mammography cancer lesion detection system.

VIDEO: Segmenting the Radiology Artificial Intelligence Market by Function

Keith J. Dreyer, DO, American College of Radiology (ACR) Data Science Institute chief science officer, breaks down radiology AI down into 4 areas and discusses where these areas stand with regulatory approval.

Thumbnail

Addressing 'model drift' to recover AI performance before it leads to report errors

“Although regularly assessing and updating these models is necessary to ensure accurate performance, there is no standard approach to addressing model drift.” 

Example of an artificial intelligence (AI) app store on the Sectra website, where Sectra PACS users can select the AI algorithms they want that are already integrated into the Sectra System. Other vendors have followed a similar approach to AI developed by many smaller vendors they partner with.

VIDEO: Development of AI app stores to enable easier access

Keith J. Dreyer, DO, PhD, FACR, American College of Radiology (ACR) Data Science Institute Chief Science Officer, explains how radiology vendors have developed AI app stores to make it easier to access new FDA cleared AI algorithms.
 

Keith J. Dreyer, DO, PhD, FACR, American College of Radiology (ACR) Data Science Institute Chief Science Officer, explains artificial intelligence (AI) for radiology. Dreyer also holds the positions of vice chairman of radiology at Massachusetts General Hospital, chief data science and information officer for the departments of radiology for both Massachusetts General Hospital and Brigham and Women's Hospital.

VIDEO: Where will radiology AI be in 5 years?

Keith J. Dreyer, DO, PhD, FACR, American College of Radiology (ACR) Data Science Institute Chief Science Officer, explains 5 developments to watch for in radiology artificial intelligence (AI).

Thumbnail

How do radiologists really feel about adopting AI? New data offer insight

Up to 60% of radiologists have intentions of adopting artificial intelligence tools into clinical practice in the near future. 

Around the web

Positron, a New York-based nuclear imaging company, will now provide Upbeat Cardiology Solutions with advanced PET/CT systems and services. 

The nuclear imaging isotope shortage of molybdenum-99 may be over now that the sidelined reactor is restarting. ASNC's president says PET and new SPECT technologies helped cardiac imaging labs better weather the storm.

CMS has more than doubled the CCTA payment rate from $175 to $357.13. The move, expected to have a significant impact on the utilization of cardiac CT, received immediate praise from imaging specialists.