Brain MRI just one ‘algorithm feeder’ for new Alzheimer’s calculator

Researchers at Case Western Reserve University have demonstrated a machine-learning algorithm that combines neuroimaging with neurophysiological, proteomic and genomic diagnostics to predict Alzheimer’s disease early on in its advance.

In a study published online Aug. 15 in Scientific Reports, Anant Madabhushi, PhD, and colleagues describe their work testing the algorithm with data on 149 patients in the Alzheimer’s Disease Neuroimaging Initiative.

The team is calling the algorithm Cascaded Multi-view Canonical Correlation (CaMCCo) and reporting that it incorporates “all diagnostic categories and optimizes classification by selectively combining a subset of modalities at each level of the cascade.”

Their results suggest that “fusion of select modalities for each classification task outperforms fusion of all modalities and individual modalities,” according to the study abstract. “In addition, CaMCCo outperforms all other multi-class classification methods” for predicting mild cognitive impairment.

In a news item published by the university, Madabhushi says many previous studies have compared healthy subjects with Alzheimer’s patients, “but there’s a continuum. We deliberately included mild cognitive impairment, which can be a precursor to Alzheimer’s, but not always.”

Click here for the news item and here for the study, available in full for free.

Dave Pearson

Dave P. has worked in journalism, marketing and public relations for more than 30 years, frequently concentrating on hospitals, healthcare technology and Catholic communications. He has also specialized in fundraising communications, ghostwriting for CEOs of local, national and global charities, nonprofits and foundations.

Around the web

A total of 16 cardiology practices from 12 states settled with the DOJ to resolve allegations they overbilled Medicare for imaging agents used to diagnose cardiovascular disease. 

CCTA is being utilized more and more for the diagnosis and management of suspected coronary artery disease. An international group of specialists shared their perspective on this ongoing trend.

The new technology shows early potential to make a significant impact on imaging workflows and patient care.