Informatics

The goal of health informatics systems is to enable smooth transfer of data and cybersecurity across the healthcare enterprise. This includes patient information, images, subspecialty reporting systems, lab results, scheduling, revenue management, hospital inventory, and many other health IT systems. These systems include the electronic medical record (EMR) admission discharge and transfer (ADT) system, hospital information system (HIS), radiology picture archiving and communication systems (PACS), cardiovascular information systems (CVIS), archive solutions including cloud storage and vendor neutral archives (VNA), and other medical informatics systems.

Example of AI automated detection and highlighting of critical lung findings on a chest X-ray for a possible lung cancer nodule and fibrosis. Example shown by AI vendor Lunit.

VIDEO: Radiology AI trends at RSNA 2022

Sanjay Parekh, PhD, senior market analyst with Signify Research, discusses trends in radiology AI seen on the expo floor and in sessions at RSNA 2022.

Thumbnail

PocketHealth launches network-free image sharing and storage platform

PocketHealth has launched a platform that lets patients and providers securely request, share and store medical images without the use of CD-ROMS or networks.

pacs.jpg

VIDEO: KLAS shares trends in enterprise imaging and AI

Monique Rasband, vice president of imaging, cardiology and oncology, KLAS Research, explains some of technology trends KLAS researchers have found in enterprise imaging system and radiology artificial intelligence (AI).

Charles E. Kahn, Jr., MD, MS, Editor of the the journal Radiology: Artificial Intelligence, and professor and vice chair of radiology at the University of Pennsylvania Perelman School of Medicine. He has been heavily involved in radiology informatics and has seen up close the evolution of radiology toward deeper integration with AI. #RSNA

VIDEO: Use cases and implementation strategies for radiology artificial intelligence

Charles Kahn, Jr., MD, editor of the the journal Radiology: Artificial Intelligence, and professor and vice chair of radiology at the University of Pennsylvania Perelman School of Medicine, explains the work involved integrating AI in radiology systems and the role of AI in augmenting patient care.
 

Charles E. Kahn, Jr., MD, MS, editor of the the RSNA journal Radiology: Artificial Intelligence, and professor and vice chair of radiology at the University of Pennsylvania Perelman School of Medicine. He discusses the need to validate artificial intelligence (AI) algorithms with your own patient population to determine if it is accurate for a specific institutions patients. He also explains how bias can be inadvertently added into a algorithm, and how the AI may take learning shortcuts. #AI

VIDEO: Assessing radiology AI and understanding programatic bias 

Charles E. Kahn, Jr., MD, MS, editor of the the RSNA  journal Radiology: Artificial Intelligence, and professor and vice chair of radiology at the University of Pennsylvania Perelman School of Medicine, discusses the need to validate AI algorithms with your own patient population data.  

Monique Rasband from KLAS Research shares trends in PACS and radiology informatics.

VIDEO: 6 key trends in PACS and radiology informatics observed by KLAS

Monique Rasband, vice president of imaging, cardiology and oncology, KLAS Research, shares some of technology trends observed in radiology PACS and and imaging informatics since 2019.

Validation and testing of all artificial intelligence (AI) algorithms is needed to eliminate any biases in the data used to train the AI, according to HIMSS.

VIDEO: Understanding biases in healthcare AI

Validation and testing of all algorithms is needed to eliminate any biases in the data used to train the AI, according to Julius Bogdan, vice president and general manager of the HIMSS Digital Health Advisory Team for North America.

Julius Bogdan, vice president and general manager of the Healthcare Information and Management Systems Society (HIMSS) Digital Health Advisory Team for North America, explains several key artificial intelligence (AI) trends he sees across healthcare.

VIDEO: 9 key areas where AI is being implemented in healthcare

Julius Bogdan, vice president and general manager of the Healthcare Information and Management Systems Society (HIMSS) Digital Health Advisory Team for North America, explains several key artificial intelligence (AI) trends he sees across healthcare.

Around the web

GE HealthCare designed the new-look Revolution Vibe CT scanner to help hospitals and health systems embrace CCTA and improve overall efficiency.

Clinicians have been using HeartSee to diagnose and treat coronary artery disease since the technology first debuted back in 2018. These latest updates, set to roll out to existing users, are designed to improve diagnostic performance and user access.

The cardiac technologies clinicians use for CVD evaluations have changed significantly in recent years, according to a new analysis of CMS data. While some modalities are on the rise, others are being utilized much less than ever before.