Machine learning-powered imaging platform pinpoints subtle differences in blood clots

A rapid imaging approach, combined with the computing power of artificial intelligence, is changing the way physicians diagnose and treat blood clots.

Researchers from Japan developed a new method—the intelligent platelet aggregate classifier (iPAC)—that uses a high-throughput imaging process to capture thousands of various blood clot images. And while manually analyzing these scans for differences would typically be near impossible, the group used a convolutional neural network to identify key distinctions in their makeup.

Senior author of the study Keisuke Goda and colleagues tested their method in human blood samples, publishing the positive results May 12 in eLife.

"Using this new tool may uncover the characteristics of different types of clots that were previously unrecognized by humans, and enable the diagnosis of clots caused by combinations of clotting agents," Goda, also a professor at the University of Tokyo’s Department of Chemistry, said in a statement. "Information about the causes of clots can help researchers and medical doctors evaluate the effectiveness of anti-clotting drugs and choose the right treatment, or combination of treatments, for a particular patient."

Blood clots have positive benefits, such as stopping a bleeding cut, but when platelets cluster together they can also cause a stroke or heart attack. Armed with insight into what caused a blockage, physicians may be able to determine if aspirin, for example, or another type of drug would be most effective.

Goda and colleagues trained their convolutional neural network to identify small variations in the shape of various types of clots caused by different molecules. And when tested on 25,000 images, it accurately classified a majority of them. 

After establishing the accuracy of their machine learning approach, the group took blood samples from four healthy patients, exposed them to multiple clotting agents and proved the iPAC could distinguish one clot from another.

“We showed that iPAC is a powerful tool for studying the underlying mechanism of clot formation," said lead author Yuqi Zhou, a PhD student at the University of Tokyo.

Zhou also noted that the platform may ultimately be harnessed in certain COVID-19 cases, given reports that some individuals suffer from blood clots after being infected.

""

Matt joined Chicago’s TriMed team in 2018 covering all areas of health imaging after two years reporting on the hospital field. He holds a bachelor’s in English from UIC, and enjoys a good cup of coffee and an interesting documentary.

Around the web

The nuclear imaging isotope shortage of molybdenum-99 may be over now that the sidelined reactor is restarting. ASNC's president says PET and new SPECT technologies helped cardiac imaging labs better weather the storm.

CMS has more than doubled the CCTA payment rate from $175 to $357.13. The move, expected to have a significant impact on the utilization of cardiac CT, received immediate praise from imaging specialists.

The newly cleared offering, AutoChamber, was designed with opportunistic screening in mind. It can evaluate many different kinds of CT images, including those originally gathered to screen patients for lung cancer. 

Trimed Popup
Trimed Popup