AI phone app IDs implantable cardiac devices on chest x-rays

Researchers out of the U.S. have created an AI smartphone app to automatically identify cardiac devices—such as pacemakers—on chest x-rays, describing their process in JACC: Electrophysiology.

Currently, when clinicians need to identify cardiac implanted electrical devices (CIEDs) they must manually analyze chest radiographs, Michael Weinreich, MD, MPH, of Montefiore Medical Center in New York, and colleagues wrote in the study.

“However, this is time consuming and difficult, requiring subjective provider interpretation,” the researchers added.

In their study, Weinreich and colleagues developed their smartphone-enabled convolutional neural network model based on a platform already created by UK researchers. They took anteroposterior and posteroanterior chest x-rays from patients with pacemakers (47%) and cardioverter-defibrillators (53%) implanted between 2016 and 2018 at a single institution. The more than 1,500 images were deidentified and coded as one of four major device manufacturers: Medtronic, Abbott/St. Jude Medical, Boston Scientific or Biotronik.

After the researchers used a cell phone to incorporate screenshots and artifacts into the images, they augmented the data and loaded 3,008 images for analysis. Broken down, 2,106 images were in the training dataset, 602 images were in the validation dataset to fine-tune the model, and 300 images were in the final testing dataset.

When the AI platform was applied to the testing group, it achieved receiver operating characteristic curves greater than 0.95. It accurately identified all of the Abbott/St. Jude Medical images, 95% of Boston Scientific images, 94% of Medtronic images and 91% of Biotronik images.

And in the validation set, the AI produced a 95% sensitivity and 98% specificity.

While the study was limited by a small training sample size and lack of external validation, the AI phone application, the authors noted, takes the “pragmatic next step” to the frontlines of care.

“Rather than the conventional ‘bench-to-bedside’ approach of translational research, we demonstrated the feasibility of ‘big data-to-bedside’ endeavors,” Weinreich and colleagues wrote. “This research has the potential to facilitate device identification in urgent scenarios in medical settings with limited resources.”

""

Matt joined Chicago’s TriMed team in 2018 covering all areas of health imaging after two years reporting on the hospital field. He holds a bachelor’s in English from UIC, and enjoys a good cup of coffee and an interesting documentary.

Around the web

CCTA is being utilized more and more for the diagnosis and management of suspected coronary artery disease. An international group of specialists shared their perspective on this ongoing trend.

The new technology shows early potential to make a significant impact on imaging workflows and patient care. 

Richard Heller III, MD, RSNA board member and senior VP of policy at Radiology Partners, offers an overview of policies in Congress that are directly impacting imaging.