Radiomics, AI fall short of radiologists in breast lesion classification on MRI

Radiologists outperformed a convolutional neural network (CNN) and radiomic analysis (RA) at classifying contrast-enhancing lesions on multiparametric breast MRI, according to a Nov. 13 study published in Radiology. With more training, however, CNNs may soon close that gap.

Daniel Truhn, with RWTH Aachen University in Aachen, Germany, and colleagues evaluated 447 patients with 1,294 enhancing lesions (787 malignant and 507 benign) from August 2011 through 2015. The team measured two RA approaches and a CNN algorithm against the interpretations of three breast radiologists.

Overall, radiologist interpretation achieved an area under the receiver operating curve (AUC) score of 0.98, beating both RA models (AUC, 0.81 and 0.78) and the CNN (0.88).

“A convolutional neural network was superior to radiomic analysis for classification of enhancing lesions as benign or malignant at multiparametric breast MRI,” Truhn, et al. wrote. “Both approaches were inferior to radiologists’ performance; however, more training data will further improve performance of convolutional neural network, but not that of radiomics algorithms.”

Truhn and colleagues found the performance of each RA approach did not improve when trained on a larger data set, while the AUC of the CNN algorithm jumped from 0.83 to 0.88 after doubling the size of the data set. Therefore, they noted, CNNs “might be able to mimic the elusive and subconscious process that occurs when a radiologist interprets MR images.”

""

Matt joined Chicago’s TriMed team in 2018 covering all areas of health imaging after two years reporting on the hospital field. He holds a bachelor’s in English from UIC, and enjoys a good cup of coffee and an interesting documentary.

Around the web

The nuclear imaging isotope shortage of molybdenum-99 may be over now that the sidelined reactor is restarting. ASNC's president says PET and new SPECT technologies helped cardiac imaging labs better weather the storm.

CMS has more than doubled the CCTA payment rate from $175 to $357.13. The move, expected to have a significant impact on the utilization of cardiac CT, received immediate praise from imaging specialists.

The newly cleared offering, AutoChamber, was designed with opportunistic screening in mind. It can evaluate many different kinds of CT images, including those originally gathered to screen patients for lung cancer. 

Trimed Popup
Trimed Popup