Researchers develop a ‘significant breakthrough’ in magnetic resonance imaging

Scientists working across multiple fields of research have developed a new hyperpolarization technique that they say can significantly change the field of magnetic resonance imaging.

The proposed concept involves rapidly hyperpolarizing fumarate, a key metabolic product in human energy creation, using parahydrogen, experts explained in the Proceedings of the National Academy of Sciences. It’s a highly scientific process, but one that could more accurately image kidney injuries, the effects of a heart attack, and much more.

Additionally, parahydrogen-induced polarization, or PHIP, is much easier and more cost-effective compared to the gold standard for hyperpolarizing fumarate.

"We have made a significant breakthrough as our approach is not only cheap but also fast and easy to handle," project leader James Ellis, PhD, of Johannes Gutenberg University Mainz in Germany, explained on Tuesday.

The benefits of MRI are widely known, yet the technique is essentially limited to imaging water molecules in the body, Ellis explained. And because of this, researchers are always working on ways to enhance the technology behind this modality.

While their PHIP approach is a promising biomarker for imaging how the body creates and uses energy, the group did encounter a few problems.

For one, there are a large number of unwanted chemical contaminants that must be removed from the final substance before it can be injected into humans like an imaging tracer.

Ellis and co-investigators did find success purifying the hyperpolarized fumarate, however, which creates a product without toxic substances seemingly safe for humans.

Finally, the researchers noted that preclinical studies have shown this imaging technique is suitable for monitoring how cancerous tumors respond to therapy along with a host of other healthcare advances.

Others who helped contribute to this study included: Technical University Darmstadt and Kaiserslautern, both in Germany, the University of California Berkeley, the University of Turin in Italy, and the University of Southampton in England.

""

Matt joined Chicago’s TriMed team in 2018 covering all areas of health imaging after two years reporting on the hospital field. He holds a bachelor’s in English from UIC, and enjoys a good cup of coffee and an interesting documentary.

Around the web

GE HealthCare said the price of iodine contrast increased by more than 200% between 2017 to 2023. Will new Chinese tariffs drive costs even higher?

These risks appear to be present regardless of a person's age or health at the time of infection.

Agfa and Sectra both performed well with end-user satisfaction scores in the 2025 Best in KLAS list of radiology IT systems.