AI tumor volume estimations could improve prostate cancer treatment strategies

Artificial intelligence-estimated tumor volume may have more prognostic value than standard risk stratification methods, new research suggests. 

Researchers at Mass General Brigham recently developed an AI model that uses prostate MRI images to estimate total tumor volume. Following the model’s validation, it was retrospectively tested on a group of more than 700 prostate MRI exams to determine whether it could provide more consistent, detailed estimations of lesion size compared to human readers. Doing so could give providers more precise insight into how to best manage a patient’s treatment plan. 

The group detailed the development and testing of their model Tuesday in the journal Radiology. 

“Al-determined tumor volume has the potential to advance precision medicine for patients with prostate cancer by improving our ability to understand the aggressiveness of a patient's cancer and therefore recommend the most optimal treatment,” explained first author and founding member of the Mass General Brigham healthcare system David D. Yang, MD, of the Department of Radiation Oncology at Brigham and Women’s Hospital. 

The team sought to determine whether the model’s size estimations, which indicate tumors’ aggressiveness, were associated with the patients’ outcomes 5 and 10 years after completing treatment—radical prostatectomy, radiation therapy, or both.  

The segmentation algorithm was able to identify, accurately measure and outline around 85% of the most aggressive lesions, those that were ultimately given the highest PI-RADS scores by human readers. The team observed associations between the lesions with the highest AI tumor volume estimations and instances of cancer recurrence and metastases. 

“The AI measurement itself can tell us something additional in terms of patient outcomes,” the group noted. “For patients, this can really tell them something about what are the chances of cure, and the likelihood that their cancer will reoccur or metastasize in the future.” 

The researchers suggested that the algorithm's estimations could also make predicting a tumor’s aggressiveness much less time-consuming and cumbersome, potentially paving the way for initiating treatment earlier after a diagnosis.

Future research on the model will include larger sample sizes with different disease characteristics to ensure its generalizability. 

The study abstract is available here. 

Hannah murhphy headshot

In addition to her background in journalism, Hannah also has patient-facing experience in clinical settings, having spent more than 12 years working as a registered rad tech. She joined Innovate Healthcare in 2021 and has since put her unique expertise to use in her editorial role with Health Imaging.

Around the web

The nuclear imaging isotope shortage of molybdenum-99 may be over now that the sidelined reactor is restarting. ASNC's president says PET and new SPECT technologies helped cardiac imaging labs better weather the storm.

CMS has more than doubled the CCTA payment rate from $175 to $357.13. The move, expected to have a significant impact on the utilization of cardiac CT, received immediate praise from imaging specialists.

The newly cleared offering, AutoChamber, was designed with opportunistic screening in mind. It can evaluate many different kinds of CT images, including those originally gathered to screen patients for lung cancer. 

Trimed Popup
Trimed Popup